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Corrugated metal (and "doubly corrugated metal") is
an anisotropic boundary which supports only a hybrid surface
wave mode in directions other than parallel or perpendicular
to the corrugations. The mode phase velocity is a function

of direction. To determine the excitation efficiency of these
modes a three dimensiofqﬁ analysis is performed generalizing

ABSTRACT

the results of Cullen and utilizing the author's previous

work [2] . Z?]
The surface waves are shown to pdésess many of the

properties of plane waves in a two dimep$ional anisotropic

medium - notably that the energy propggation is radial and

not generally normal to the wave fropts. Radial propagation,

however, does not imply that the primary pattern of a feed and

the resulting far pattern of the syrface wave are the same.

The hybrid plane wave component of the spectrum of the source

which propagates in a direction ¥¥parallel to the ground plane

with the natural surface wave phase velocity of the boundary

in this direction is observed in the far field in a direction

§ not generally equal toy ! Moreover the excitation efficiency

is not independent of ¥ _) Therefore, the possibility of focussing ; ;

by an anisotropic boundary) remains.

In Part II Cullen'’s formJ{E\;or surface wave excitation
efficiency over a dielectric slab and ground plane is also
generalized to thick slabs. The wide range of efficiencies
obtainable as a function of slab thickness, dielectric constant,
and source height is related to many of the difficulties ex-
perienced in constructing surface wave antennas.
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PART 1

EXCITATION OF SURFACE WAVES IN FREE SPACE
OVER AN INFINITE PLANE ANISOTROPIC BOUNDARY

INTRODUCTION

ICullen[lj has considered the excitation efficiency of a
surface wave over an infinite plane corrugated metal boundary
launched by an infinite line of magnetic current parallel to the
corrugations. In this paper we consider the more general problem:
of an arbitrary source over corrugated metal and other boundaries
to be described.

From a three dimensional point of view corrugated metal is an
anisotropic boundary. The surface waves excited on it have phase

velocity dependent on the direction of propagation and many of the

other properties of plane waves in a two dimensional anisotropic
medium. The surface wave front created by a point source near an
anisotropic boundary is, in fact, a more complicated curve than the
elliptical wave front of a point source in a two dimensional aniso-
tropic medium. The boundary anisotropy may cause focussing or de-
focussing of the source - a phenomenon with no counterpart in Cullen's
two dimensional problem.

In practical microwave work one is sometimes confronted with

a three dimensional problem in which there is a plane of symmetry
both with respect to the geometry and with respect to the incident

field. In ;his case it is common to assume that the solution

to the problem in the plane of symmetry is not very different
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from that of the "two' dimensionalized" problem which one obtains
by assuming that the incident field and the geometry are the
same in the plane of symmetry as in the original problem and
are independent of the coordinate perpendicular to this plane.
This assumption is implicit in [1 ] ,» for although in the main
body of the paper Cullen clearly states that he is solving a

two dimensional problem, in his section on experimental veri-

fication he describes a three dimensional set up. His ex- ‘;
perimental source is a half wave long slot rather than the

infinite magnetic line current assumed in his theory. The *
failure to distinguish between these two sources, might very i

well not offend the microwave intuition of anyone. How -
ever, in this paper the efficiencies of surface wave excita-
tion are compared for the two sources and they are found to
differ both because of inherent differences between two and
three dimensions (chis applies both to the corrugated and to
the dielectric clad ground plane) and also in the case of the
corrugated ground plane, because of the anisotropy. In certain
cases the difference may be numerically appreciable.*

If the corrugations are parallel to the plané x=0
and the z axis extends out of the grooves then in the two
dimensional case the boundary is characterized by a normal

impedance condition:

(W o
Z=0

A

* See Figures 9., b, ¢, and d.




If the thickness of the teeth of the corrugations is negligible
compared to the gap between them then

(2) zZ =2 -1 ,—ek tan (kd)

where d is the depth of the grooves and k = w fue is the
free space propagation constant[ll. The same elementary con-

siderations which lead to (2) show that

(3 ;iL-o “o.

Before proceeding it is useful to generalize the problem
from the case of ordinary or single corrugations to the case of a

"doubly corrugated surface" shown in Figure 1.

{ )
«rg—ﬂ

Epkighl
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FIGURE NO. 1
DOUBLY CORRUGATED SURFACE
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Such a surface may be made by milling on a £lat metal plate

a set of parallel grooves of depth d , width g , and tooth

. width t , then rotating the plate 90° and milling a second
set of grooves of depth D, width G, and tooth width T. If
the x direction is taken parallel to the first set and the y
direction parallel to the second set, then to replace (1) - (3)

we have the following boundary conditions

= -Zi kd
. (&) [ can(ka)

- 2z -1(8p) [~ tan(kD) \

B “)

Ar

Z =0

ORI
x

Here G, T, g, and t must all be assumed small compared to
the wavelength. Obviously, if we take D= 0 or G = 0, we
return to the case of single corrugations.

SOLUTION OF A PLANE WAVE INCIDENT ON A DOUBLY CORRUGATED BOUNDARY

The two normal impedance conditions (4) and (5)
determine the scattered field when any field is incident
upon the surface. This will be shown in general later. Let
us first assume that a ™ plane wave is incident at angle O
to the outward surface normal with the plane of incidence at
angle ¥ to the positive x axis. Let

(6) P = ksin@, w = kcos® = k2-p2

and let #, §, and z be the cylindrical coordinate system
associated with the rectangular coordinates in the usual way.

Then the incident plane wave field may be written as




o~ iwztippcos(§-V)

(sin¥y, =-cos¥, 0)

weE = e'i"z“iP"’“(""’)(cosv, sinV, —5—)

We use here the notation (a, b, c) for the x, y, and z
components respectively of a vector.
In order to satisfy the boundary conditions (4) and

(5) it is necessary in general to postulate two plane waves

reflected from the surface, one TE and one ™, rather than
simply a ™ reflected plane wave as is sufficient in the case
of an isotropic boundary condition. Mathematically, this is

true simply because we need in general two reflection coefficients

Ry and R, to satisfy the two conditions (4) and (5). Let the

reflected ™ wave be
Rl elwz+ipAcos (#-Vv)

(8) H = == (siny, -cos¥, 0)
N w .

weE = Rleiwz+ipfcos(¢-V)(_cos Y, ~sin V,—%—)

and the reflected TE wave be

9) KH = Rzeiwzupfcos("‘f’) (cos¥, siny, — _%_)

w._::_g - ;2- eiwz+ippcos(¢-V) (siny”, -cosy, 0).

Each of these waves satisfies Maxwells equations and propagates
outward to infinity. The total field will satisfy the boundary

conditions 1f, as we find upon substitution in (4)-(5),
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(10) "Rl('v];— + ﬁ)sinv+ E%(l + %-)cos Y =
. o o

oy (- o
o
Rl(-'iv]:- + a%z-)cosv + —;;2— 1+ %’%)sinv -
cor¥ (g -

This pair of simultaneous linear equations may

readily be solved to yield

ay +X ) (¥ X+L)sinly + (¥ + X)(¥ X _+1)cos?y

-X ) (¥ X+1)sinZy + (¥ - X)(¥ X _+1)cos’y

2(xosin2v + X coszv + ¥ XX )

-

o xenlv

1 — —y—
¥ Y (xocos Y+ Xsin®y) + x(l-xxo)-Xcos y-X 8

21 sinycosy ¥y (xo-x)
¢y -xo)(Yx+1)sm777+ (Y -X)(¥ X +1)cos’ v

12) &, -

where we have set
(13) w
€ €
VeI s Xet oz, X -z, [

In the lossless, doubly corrugated surface case, X and xo
are real. If ¥ is real and positive the reflected waves
are surface waves traveling in directiony .,

We have thus solved the problem of reflection of

an incident ™ plane wave. In order to do the same for a
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TE plane wave, we can use the duality principal on all of
the preceeding equations. The duality principal states that
these equations remain correct under the substitutions:
(15) Eqc—H
o He——2-¢

2 —-1/z

X&——=2-1/X,

TEe——*™
if these substitutions are made wherever these symbols occur.
The results give the solution for the TE plane wave. An
arbitrary source can be resolved into two sources producing
a continuum of TE and ™ plane waves respectively. This is
proved in [2]° We will next show how to find the total
solution for the ™ part of a general source. When this has
been done, we can apply the substitutions (15) to the ™™
solution in order to yield the solution for the TE part of
the source, and thus the total solution. Bearing in mind that
there is no essential loss in generality thereby, we confine
our attention exclusively to a ™ incident field for the
remainder of the paper. Before doing so, however, it is
worth noting that the poles of R; and R, as functions of p
are unchanged by the substitutions (15). This implies, as
we shall see, that in general the surface waves which can be
produced by TE and ™ sources are the same. In any case no

surface waves exist other than those corresponding to the

i ¢ s i
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poles of R, (or R,, which has the same poles as Rl).
SURFACE WAVES '

When the denominator of R, in (11) is zero a free
solution to Maxwell's equations can exist which satisfies
the boundary conditions and has many of the features usually
associated with a surface wave. We shall derive these
surface wave fields in a later section. Let us, for the
present, however, simply examine when they can occur. The
condition for a surface wave is that its vertical attenuation
constant shall be ¥, the particular value of ¥ which is

positive and satisfies:

2
(16a) 7°(Xbcoszyr+XSinzqf)+ 75(1-x&)-Xcoszbf-xosinzyf =0

or
(16b)  tan’y = £(¥))g(Y,), £(¥)=Z=L

1 +¥X
(16a) and (16b) are quadratic equations for ¥, having at

most two roots. These are:

(17)

xx -1 % \/(1+xx )2 + (x-x )%sin’2y

Yo = f[x + (X, = X)cos 1,7_

When the denominator vanishes, tan W ==—ig— and

X+ X (1-tan?y)

18) ¥, = -
Yot o ammy - ey (el

If X and X, are both positive, then the only positive value
of '7; corresponds to the positive sign for the radical. If
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X and X, are both negative, then the negative sign is required
for the radical. If:-one is positive and the other negative,
either sign may be required. In order to determine the
number of positive solutions of (17) and some of their
properties as functions of ¥ we now consider various cases

separately.

m Pure Inductive Case

‘Assume X and X, are both positive. Without loss in
generality, let X & X,. For each Y , there is then one and
only one Yo satisfying (16). We may see this as follows:
The left member of (16b) is always positive. The right
member can only be positive if Xo is between XO and X. In
the range X & ¥ = X, both £(Y) and g(¥ ) are positive de-
creasing functions. Therefore, their product is also a mono-

tone function which decreases from infinity to O in this interval

!
X l
(l!)|
(¢ 4
; /g )
l
__ | > Y
X X >
OI \
1
-.xo | |
' :s(r)
I
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Since the left member is a monotone increasing function

for 0& Y4 ¥/2, there can be only one solution YO - XO(V).

Furthermore, this solution equals X when ¥ = 0 and decreases
continuously, as ¥ increases, reaching a value Xo when

Y = 7/2. The values repeat periodically in the other
quadrani:s - as indeed they must - for, from the symmetry

of the problem, there is no distinction between any angle

Yy and the related angles - ¥, 7=% , or T +¥ . There-

fore Yo is a maximum when ¥ = 0 and v and a minimum when
Y = w/2 and 37/2, and accordingly
20 when 04 ¥ 2 7/2

(19) z LoV
2‘o = Y O when¥ = 0, 7/2, w, or 3w/2.

(1i) Mixed Case: aNO, XOAO

' -l
(iia) X £ =1 or X> X_

b

S o A R ko DA A I A s e i ol SO LRI -0 o S 5 U A i ki
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In this case, in the interval 0 £ Y& -1/x°, both £(¥)
and g( ¥ ) are positive decreasing functions, hence so is
their product. Equation (16) has a unique root here if and
only if
(20) 2 X

0% tan”" W& — T .

For this root y) £ 0. In the interval —T € J/ £ X,
£(Y) is positive and g(i) is negative, so t:hat. there are
no solutions of (16). If ¥ 2 X, both £(¥) and g(¥) are
negative decreasing functions so that théir-product.: ié a
positive increasing function. Equation (16) then has a

unique root in this interval if and only if

’ X
(21) 0 £ tany £ -—;—,

and for this root y' > 0. These facts may be summarized
o X X
as follows: Let m = min {- 2+ ——+}. Thenm £ 1.

X X,

We conclude that if tanz‘l'f & m, there are two values of

¥, satisfying (16), one in the interval 0 £ ¥ £ -1/X,

and one satisfying X £ ¥ . If m £ tan’y & % there
is only one value of YO satisfying (16) ;nd it 1lies in
the interval 0 £ ¥ £ - 1/x° ifm = ;—% , or in
X 2 1
2 Xifm=-— . If tan“ya—=— , (16) has no
4 X m ’ M/

solutions. The root in the interval 0 & ¥ & - 1Ix° is
a decreasing function of ¥ :, i.e., ¥« 0, and i:he
(0

root in the interval X £ ¥ is an increasing function of
Y :l.e., y' 0. This case is illustrated in Figure 7

o
Hith x - 1’ xo = -4.

_TECHNICAL RESEARCH GROUP _



(11b) XX, & -1

-1/X

g(¥)

>
1
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The conclusions in this case are similar to (iia).
1f unzv & m, there are two solutions to (16) R .one in

the interval 0 £ ¥ < X and one in the int:ervél -1/x°£ Y .
2 1

If m &£ tan® YW £ -’ there is only one solution. 1t
1 ' satisfies -1/x f)’ifm-—-—;g— or 0L Y £ X if

X o
m= - —XL . Both cases (ii a) and (i1 b) may be sumatized

together if we let M' = max Z T} m= mi.n{ x—x—

and m' = min {x, -1/x°} . Then if un Y & m, there are
f two solutions to (16), one in the interval 0 & Y £ m'
(for which ¥} < 0) and one in the interval M' & ¥ (for

which ¥l > 0). Ifms& unz'qfé _1_, ’ there is only

one solution. It satisfies M'< Y if me—- T or




x y
0L Y< o ifme—-—y? .| If unzw;-:—, there

are no solutions to (16).

(1i1) Mixed Case: X N0, XZ0.

Here if we let M" = max {xo, -+},

= min {xo,-—%-}. Then 1£-|-1'—‘un2w, there are

two distinct solutions to (16), one in the interval
04 7 < n"(for which y!0) and one in the interval

M'< ¥ (for which ¥, 2 0). If m <tan’y & —1, there
is one solution. It satisfies M< V,ifn=- -§—, or
. ]

X
0L Y= o, if m -—19- . If tanzvé m there are no
solutions. |

(iv) Pure Capacitive Case: X, <0, X=«0
A

|

|
-1/x, : — 5D
8(¥ )~ |
| |

—> Y
-1/x '1/}\

£Q)

P . .
P L = e -




[ |

] | 14.

In this case, for each ¥ there is a unique positive X,
satisfying (16). This value of )’o lies between -1/X gnd
-1/X_ . 1f we assume X £ X, then ¥, £ O .

FIELD PRODUCED BY A SOURCE OVER A DOUBLY CORRUGATED BOUNDARY

Equation (38) of reference [2] gives the represen- {
tation of a more or less arbitrary incident TE field as a
superposition of plane and hybrid waves weighted according 'l

: to the far field of the @-component of E for the source in

| free space. Equation (125) of [2] glves a similar repre-

E sentation for the scat:i:ered field. In order to utilize

! these results here we must first employ the duality sub-

1 stitutions (15). We must then make a change in coordinates
(;n [2] positive z points into the boundary). Finally we
must include the pair of reflected plane waves instead of
the single plane wave reflected from an isotropic boundary.
If these steps are performed correctly, we obtain the total

field, incident plus scattered, for a ™ source:

(22) 2 ipp cos(@#-¥)+iwz

-szcosVU_, kcosV(U++RIU_? - szsinVU_, Rzpu_}

{ - ipAcos (§-¥)+iwz
i ¥ pe
E= Iroe £ } v dpdV {wcosv (U ++RIU_)

-kstinVU_, wsiny (U++RIU_) + kchosV u_,

P, + RU) j .
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The symbolism U_ and U_ has the following meaning: the
§ component of H , when the source is in free space,

assumes the form

e:l.kr 1
(23) F(O,i)—r—— + 0(—2—) as r —» 00
T

5 where F(0,#), the "far field", may be rewritten in terms
, of p = ksin® and ¥ = § as a new function

L U(p,¥) = F(sin']p/k, Y ). An ambiguity exists in this
definition since the inverse sine has two values:

v-0 as well as 6. The far fields in these two directions

are not generally the same, of course. (An exception in
the plane § = 0 is the magnetic line current along the
y axis. Here F(0,0) is a constant). U(p, ¥ ) is thus
generally a double valued function. In (22) we have

let U_stand for the value of ulp, v ) corrésponding to
directions for which @ is less than #/2 and U_, the
other value, for which @ exceeds 7/2.. Our problem now
is to obtain both the radiation field and the surface
wave field from (22). The former is the asymptotic
value of these ihteérals for large r, where £ = rsinv,

z = rcos®. The latter is the asymptotic value when » is
large and z is fixed. Faced with the same problem for

the isotropic boundary case, the author required con-
siderable mathematical analysis in reference [2] to
obtain just the surface wave field rigorously. The
method employed there cannot apply directly here since

now the reflection coefficients have an angular




dependence: R, and R, are functions of ¥ .

Instead here we outline a proof which it is believed
could be made rigorous though not without great effort. We
present it simply as a plausible argument. We begin by writing
each of the integrals of (22) as a sum of two terms, one contain-
ing the W integration from -¥/2 + @ to /2 + @, and the other the
integration over the remaining interval from »/2 + § to 3v/2 + 4.

We indicate this symbolically with H as
2 #w/2

§+3r/2
(24) HeH +H, ul-S f ,Hz-f z ,
o ° g-r/2 ' ° +7/2
since there is no need here to bore the typist with the lengthy
integrands. Now we observe that U(p,V¥) = U(-p, ¥ + ¥), since
the direction (9,#) is the same as (-G,ﬂ+r).— Thus, 1if "in the
integrand of H, we make the change of variable V' =Y+ o1,
p' = -p, we find that
: $r/2
(25) Hy = S
o T g-v/2
so that
* §+7/2
(26) H = 5
=® §g-v/2
(The details of indentation of the p integration

contour about the poles of Rl and Rz, of course, must be properly

'.‘, undlcd)- In the p integration we have succeeded, therefore,




in obtaining an infinite contour which may - if the integrand
behaves 'broperly at :l.nfi.nicy - be deformed around the poles and
) branch cut. In the Y integration, we have avoided the stationary
: phase point in the backward direction ¥ = § + 7 and are left
with the only physically reasonable stationiry phase point at
Y =f§. An estimate of U(p, ¥ ) for large p 1is reéuired. It
is not hard to show, from‘the férmulas of [2] , that
/%Jn(p? - |Kete)|s ,

(27) U(p, ¥ ) = 0(e , P —>@

where A~ is the radius of the smallest sphere containing the
; source and § is the minimum distance of the source to the plane

z = 0. A formula similar to (27) would be required in a rigorous

A

proof.
RADIATION FIELD
The radiation field follows from a stationary phase

‘ evaluation of the integrals. When the observation direction
’it is (0,§) the stationary phase point occurs when ¥ = §,

p = ksin® (and w = +kcos®). The results may be most Qi.mply
expressed in terms of the @ and § components of the field as
follows:

(28) H' = F(0,0) + er(f-O,‘)

l'lo = -lzr(r-ﬁ,l)

Eg = - xzr(r-o.!)_
E = 'w'éL (p(o,ﬂ? + ergr-o,i??

bl
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where R; and R, are evaluatedat Y = -icosd, ¥ = §:
(Xcoszo - xo)sinz-l + (xocoazo-x)coszl + 1co-0(1+xx°)

(29) R =
T (1cosO+x°)(1-1Xc080)sinzl + (icosO+X)(1-1x°cosO)c0l2¢

2(1xx°coso - xosinzﬂ - Xc032¢)

=1+
(xoc032¢ + Xsinzl)cosze - icoso(xxo-l) + Xcoszﬁxosinzﬂ

2sinfcos@cos® (x-xo)

(xocoszd + Xsinzl)cosze - :I.cosO(XXo-l) + Xcoszﬂ + xosinzﬂ

The power flow between two meridians: N A '1 is

2 1
(30) P = -‘;e— {fl sinOdOS d#(Exil) « §i

° g, 41
where it 1s the unit radial vector. Substitution of (28) 3_?
yields ' g
(31) % i
T / g 8in@de g d¢ lF(9,¢)+R1F(r-O ¢)l |

o

| nzi'(r-o,c)lz } “

The first term in the integrand corresponds to the unde =
polarized field, the second term to the depolarized field.
The two fields are orthogonal and their energies are additive.
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SURFACE WAVES

We observe thag the poles of R, and R2 are functions
of ¥ . Hence we perform the p integration first. While,
as mentioned above, our derivation is not meant to be completely
rigorous, it is worthwhile to determine carefully whether the
poles are actually crossed when the p integration contour is
deformed. The whole question of the existence of the surface
waves 1s at stake here. For this purpose, as is customary in
similar problems, let us introduce a little conductivity into
the medium. That is, we assume that.jm(k) (the imaginary part
of k) 1s slightly positive. The integrands of (22) have branch
points at p = k and -k. The integration contour is along the
real p axis and we have taken branch cuts as shown in the
figure (the same as in ref. [2] ).

m(p)
[

k ¢ pole
-k —= Ae(p)

—e

branch cuts

FIGURE NO, 2




We must deform the contour into the upper half plane in order

to safely neglect the contribution from infinity. We shall obtain

a residue from a pole, therefore, only if it lies in the upper half
plane. Let us show that all the poles which are real whenJ'm(k) =0

do lie in the upper half plane when J.m(k) is positive and appfo&ch

the real axis ast(k) approaches zero. Equations (4), (5), and (13)
imply that both X ar-ld.xo take on a slight positive Mgimfy part'when
k does. Suppose for the moment that ¥ is fixed, then (16) defines

ORI T . M Al S TS AL 1 I ' ittt it Sms o+ 7 i

Yo as a function of k . When J:n(k) is zero, of courée,A Y, is
real. Implicit differentiation of (16) with respect toJm(k) (bear-
ing in mind that all three quantities Yo, X, and X  are functions

of Im(k)) shows that the derivation of J/m( Xo) with respect to

Jn(k) iinalways positive when 70, X, and X are real. Thus the
introduction of slight conductivity moves the pole (or poles) in the

Y -plane from the real axis slightly into the upper half pléne.

The cut p plane of Figure 2 is mapped into the region lying to
the right of the image of the branch cuts in the Y plane (Fig. 3),

Y

 f
,'V ::gspi;tlgne ’/ '

FIGURE NO. 3
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Since p = k\/l + 72,

(32) 3P / A ST ¢)

' ) Jutc) - 1432 3l

By setting Jm(k) equal to zero in (32), if Y, is positive, we
see that the left member is positive. Every pole in the

plane which maps into the cut p° plane corresponds to positive

Y o &nd hence maps into the upper half of the p plane. Thus

- the residues of all poles are actually obtained.

Taking the limit as pom(k) vanishes, we find from the

residue theorem the surface wave terms

g+7/2 .
(33) H, =1 S —';2 Uk ) ek ¥ oZHikL cos (§-¥) (-r, sin¥
o g-x/2 °° ]

-1 ¥ r,co8¥, ricos¥ - 1 Xorzsin‘r’, rz,do)d’f’

$+7/2

é?_ U(k/°~v) e"k Y°z+ik/°ﬂ°cos ("‘V ) (1 yorlcos V
o

g-v/2
~r,siny, 1 YoflsinV + r,cos vV, -, /o)d'lf,

where, we have used our previously defined vector notation and
have let /’o be the "equivalent index of refraction" of the

surface wvave:

/2
(34) /%-Yo-l-l,
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and
(35) Zk Y (Xcos ¥ +X sin? v+ Y XX )

- rl'resul
kg @Y, (Xsin?y +X_cos?y) - XX +D [1+ ¥
[o]

ZisinVcost Y (x -X)

r, = resk
2 2 (ZY(Xsinz‘v+Xcosv)-xx +l)?1+y2

.k /O 1

b

If there is mcre than one positive value of ¥ o satisfying (16)

(as there may be in the mixed case XXOA.O), then there 18 one

term of the form (33) for each value of YO.

We next evaluate the integrals for large A by the method

of stationary phase. It is at this point that an important
difference enters between the present problem on the one hand,

and the two dimensional or isotropic boundary problems on the
other hand. The difference is that in the exponential coefficient
k/acm(i- ¥) of o, the factor @, depends on ¥ . The stationary
phase point, thus, in general does not occur at ¥ = @. It

occurs at the root of

2
(36) 3‘3—'; ,/70 +1 cos(!-Vano

1f we call this root W (§) then, by carrying out the

differentiation we £ind

@  #=V- t:an']'( ) V- un'(/d )
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where 7; - )YOI)V , and the principal value of the inverse
tangent is implied in (37).. Since )’o is given as a function
of ¥ by (17), for each # the stationary phase point ¥ may be
found, in pr_'incipal, by means of (37). Calculations for simple
corrugations (xo = 0) are graphed 1n.F:Lgure 4. It appears

1 possible in certain éases, to have more than one stationary

. phase point, i.e., two or more values of ¥ for a given ¢.* We
shall consider first those cases where only a single stationary

J phase point occurs.

For the stationary phase evaluation we also require i

(38) /
: ( _T( 1+ c08(¢-V) )

Y= V(G)

Y;z-(1+X) +y 7(1+Y)2X )"2

[(1+ YYD+ g 2)] 1/2
We obtain finally the surface wave field as-

1+1 kz+ik/ 5 € [ ]
(39) f, E_*'Fﬁ 2,8 U_(ly.,V)e' Y Jkz+ily oocos( 'V) _(-rlsinV

-1 )’orzcos Y, ricos¥-1 ¥ r,sin¥, r,.4)

1+1) e k
', - (1+1) o, [2x U0, )e” ¥ kz+ikeq cos(o-v)(ih cosy’
we ¥ kes

-ry8iny, 1 b4 or18in¥ + rycosy, - rl/o)

x This is shown in F:I.gure7 for x =1, X, = -4. -

i
]
,
%i
!




W3 s, e et 1

LAl ik o Sl DAVl 5 s S TS S k- ite R 2 , itgrs

e £ AT

< v e A Bt 2

| vreee

4 VR s P g A i

SR e A Y A g Ml VS sl im O AT b

|.O—

INDUCTLIVE CASE:

5 IRy s

g A - T

2 (@)

fTeg® cos(y-ﬁ
FIGURE 4a

x-l’ xo-OO

Showing Far

Field Wave Front and Relation of Initial Energy
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(Isotropic Phase Source)
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INDUCTIVE CASE: X = 2, X, = 0. Showing Far
Field Wave Front and Relation of Initial Enexrgy
Flow Direction ¥ and Far Field Energy Flow §.
(Isotropic Phase Soutce)
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The power flow between the meridians 904 GLOI is
(40) B, - Qz_e ZJ dz-f PIW(E, x 38)3 =
) GQ ;
A |
I'E’ZE' g -'—-,-1- ’ U(k/d V)’ zdﬂ ((rlz-r%)cosy-z.i Yorlrzsinw,
)

(rlz-rg)sinv + 21 YorlrzcosV,9

where ¥ 1is defined as a function of # by (37). The surface

wave power flow is thus parallel to the surface. The radial

component over an element df is

(41) 102 uks,v)|?
Py '3
° Zl«uels/ Y,

((rl-rz)cos (F-v )+21i) ,F1rp8in (G-V))

The azimuthal or @-component is

0 20| V2]
e 21«»e[s/y

(rzz-rlz)s:l.n (¢-V)+2:I.Y°r1r2cos (#-v).

By direct but lengthy computation (details in Appendix 1), we

can prove that

(43) (rzz-rlz)sin(i-V) + Zi?orlrzcos(D-V)! 0,
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As a consequence,

(44)

P.' = 0

i ! and
‘A 3 2, 2 2 ]
. (45) P -p.'/°h“/”49;f£) « ;
8P s 3. oa (-
| 2kwe's176 cos(@-V)

Equation (44) implies that the power flow is always radial.

T A N

The direction of power flow is, by definition, the direction g
f i of the ray. Thus the rays corresponding to the surface waves

are straight lines. One can also show that the extremals for

2 A e o S0 w1

least time in an anisotropic, homogeneous medium are straight

flow but also are the quickest possible paths for energy flow.

:
i
gr

|

; § lines, so that the rays not only denote the direction of power
|
§ Fermat's principal is thereby verified for this case.

However, the rays are not normal to the wave fronts.

ol

The wave fronts are defined as in the isotropic case either
as (a) the contours of constant phase or (b) solutions to the

eikonal equation. We proceed now to find the equation of the

wave fronts and to show that these two definitions are equiva-
lent in the present case. For simplicity we suppose that the
phase of U(k,db,yf) is independent of y, as in the case of a

magnetic dipole source.

At a fixed instant of time (or fixed value of ~ ) the
surface wave traveling in direction ¥ has advanced from the
origin a distance /¢ . Figure 5 shows, for example, four
neighboring phase fronts. The set of all these phase fronts
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form the envelope of a curve C which is the wave front. To
prove that C is a wave front, first repeat the process just
described for a slightly lax"ger value of o, say P+a4a, .

There resultts a second enveloped curve C;. To show that both
C and C, are wave fronts, obgerve that the distance between them
measured at any point along the normal to either of them is
(correct to first order in 4, ) ap/ /> where & 1is evaluated
for the direction ¥ of this normal. This establishes the wave
fronts as a set of curves whose orthogonal trajectories or wave
normals separate any two nearby curves by distances proportional to

the wave length in the normal directions.This means that they
satisfy the eikonal equation. We proceed to derive the equation
of the wave fronts:

The equation of the phase front traveling in direction

is

(46) xcosy + ysin¥ = /4 -
These lines are the envelope of the wave front.

The wave front is thus given by the intersection of (46)

and its derivative:
(47) ~xs8in?V¥ + ycosy = %’.-2— Ay .
4 o
The equation of the wave front‘is therefore
P
(48) X = L cos ¥ +——%sinV
Ao /40

-~

- ! cosy + —L=— giny
y Ao p .

2 A
AO
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1f we let (r,#) be the polar coordinates of the wave front then
ietting X= rcésﬁ. y = rsinf in (48) we find

(49) - 1
N r -:iéz (ﬂ%? + /652

and
tany + 46’
(50) tanf = Lo Ao .
) . /’o + loé t&l’l'l"
The latter may be rewritten as
- ]
(51)  tan(d-v) = L0
o ) o

Comparison of (51) with (37) shows that # is the same as the
stationary phase observation angle. Also (51) implies that
(52) cos(f-y) = 22

VAL A

so that (49) may be written as

(53) r g cos(f-y) = P~ .

Comparison with (39) shows that the wave front given by (48)
% in rectangular coor&inates or (49) in polar coordinates is )

also the contour of constant phase in the far field of the

surface wave. Definitions (a) and (b) are therefore both

verified. |

COMPARIL W 4 TION A CRY E MEDIUM

It is instructive to compare the propagition of

surface waves over an anisotropic boundary with the propagation
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of plane waves in a homogeneous, anisotropic medium such as a
crystalline medium. The latter is described in considerable
detail in Planck's "Theory of Light" [3] .

One basic difference between the two phenomenon is
that the propagation directions of the surface waves all lie 1
in the plane of the surface, while many of the interesting
features of the crystalline propagation (such as the existence

of the primary and secondary optical axes) depend on the three

A i

dimensional properties of the anisotropic'medium. If we restrict
the latter to a two dimensional medium, however, some interesting

comparisons can be made. In each case, a single infinite plane

wave propagates energy in a direction which does not coincide
with the normal to the wave front unless the latter is in a
principal direction. In each case, energy from a point source
propagates along the radial lines from the source although the
wave fronts are not concentric circles. However, the dependence
of phase velocity on direction is more complicated in the surface
wave case than in the crystal case. While in the
crystalline medium the wave fronts are ellipses; on the aniso-
tropic surface the wave fronts are more complicated curves.
Examples of the latter are shown in Figures 4a, b, c and 7.

In the crystalline medium, apart from certain exceptional
directions, exactly two waves can and do propagate from a

source. These are cross polarigzed from each other, and have

different phase velocities. In each wave EI and H are
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perpendicular to § the direction of energy flow. On the
other hand, on the anisotgopic surface, in each direction
either zero, one, or two waves can propagate each with its

own phase velocity. Each wave is a hybrid mode, a combination
of TE and ™ modes. Each of the latter is a separate solution
to Maxwell's equations but only a certain proper combination
of the two satisfies the boundary conditions. This same com-
bination guarantees that the surface wave energy flow from a
point source will be radial (i.e., that Equation (43) holds).
The energy in the hybrid mode is not the sum of the éeparaté
energies in the TE and ™ parts so that there is energy
coupling between the latter. E and H are not usually
perpendicular to S.

The radiated field reflected from the anisotropic
boundary, on the other hand, has none of the properties of
propagation in an anisotropic medium. For the radiated field,
E, H, and S are an orthogonal set and S 1is perpendicular
to the wave front which is spherical. While the radiated field
generally has both TE and T™ modes (even if the source is pure
TE or pure TM), the power flows of these modes are orthogonal to

each other.

EFFICIENCY IN A PRINCIPAL DIRECTION COMPARED WITH CULLEN

When v = 0, then from (17), y! = 0 and, from (37),
# = 0. We observe from (16) that *B = X or -1/xo (if these

are positive). Substitution of -1/x° for 7; and zero for v

i Lo BN o 0 SRSE S

< -~y
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into (35) yields ry =1, = 0. Hence there is no excitation of
the mode for which ¥ = -1/X in the direction ¥ = 0 even if
this mode appears to be a free solution of Maxwell's equations
and the boundary condition. For the 36 = X mode at ¥ = 0,

2
zu = o.

(54) r, = r
‘ L /1ex2 2.

From (17), correct to second order in ¥

v (x -X) (14x2)
(55) Y. =X +

o
1+xxo

So that from (37), correct to first order in ¥
2x(x-x°)

1+xxo

(56) =¥+

From (38)
' 2X(X-X )
(57) s(§) = - 14+x% (1 + ’1735?"’0

Finally from (45)

2
27kX|U(k €., 0
(58) P, - i ’d; ) .

we (1+ "r:xx;—)
For the purpose of comparing our result with Cullen's [1]
let us define the efficiency # of surface wave excitation in a
given direction § as the ratio of surface wave power radiated
outward between the meridian @ and $+df to the total power

radiated outward between these meridians in the limit as df

aspproaches zero. From (31) and (57), we see that for § = 0
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s (39 ;’ﬁﬁ—r—
.. 7 + ¥s/fr
where '
(60)
Ry ex[ue 45,02 )
L 2X(x-x ) "2 2 |
(1+ ——2) S 510040 |F(0,0)+R, F(r-0,0) | ]
1+XX k
° o
? where
3 2X(iX cos6-~1)
# (61) R, =1+ 9

Xocosze - icosG(xxo-l)+X

Apart from the fact that Cullen's formula for efficiency
applies only to the case X, = 0 (single corrugations), there

are three differences between our formula and his.

(1) A factor c. 1+X2

is missing from the denominator of
(60); The absence of this factor appears to be an inherent

&ifference between the two and three dimensional probieus, since

its counterpart is also missing in the rigorous expression
(130) [2] for the surface wave in the three dimensional iso-

tropic case. The difference between the two and three dimen-

o S BN b o AR 4D

sional problems in this respect may be traced back to the
difference between the three dimensional ‘integral representa- f
tion for the field as given by (22) and Cullen's integral
representation (19) of [1]. The eipressions are almost the ;
same, but the factor p° in the integrand of (22) has no

1, N e oM  bte i  1a

counterpart in (19) of [1]. This factor p 1is the Jacobean

of the change of coordinates in the transform plane from
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rectangular, with area element dudv, to polar, with area element
pdpdy . (This change of coordinates is carried out explicitly'
in [2] ).' The same change of coordinates in the two dimensional
case neéd never be explicitly considered since it degenerates

to the identity transformation.

When the residue theorem is applied, p 1is replaced
by &, which at § = 0,equals Jq_:EI . When the latter factor
is squared for the computation of power, the factor of 1+x2,
which appears in the numerator of Cullen's expression, (and
would otherwise also appear in (60))is cancelled (Note that
Cullen uses (¥ for our X).

(2) In computing total radiated power, we must integrate
over a large sphere, not over a cylinder as in Cullen's case,
so that the factor sin® appears in the integrand in (60) but
does not appear in the analogous expression (35) of [1}".
Again this. factor is a Jacobean which is not the same in two
and three dimensions.

2X(X-X )
(3) The factor 1 + T:RX'_Q—' appearing in the denominator
o

of (60) does not appear in Cullen's expression. It arises
from the fact that the wave number kA, is a function of
direction ¥ , i.e., that the boundary is anisotropic, so
that s 1is a function of §. In Cullen's case 8 equals
A and is independent of §. To say the same thing in more
physical though perhaps imprecise terms: the fact that the

wave fronts of a point source are not circles implies that,

i L e

i
!
|

11




in the stationary phase evaluation, the far field will vary

with the curvature of the wave front at the stationary phase
point - the flatter the phase front and the mare "stationary"
the stationary phase point, the larger the contribution to the

far field. This phenomenon has no analogue in the isotropic

boundary case.
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AFPENDIX 1

, Proof of (43): !
It is sufficient to prove
: : 2 ¥ ryx, \
. (A1) tan(f-y) = -y, ]
A S : r,“-r ;
i 1 2 _}
f or in view of (37) i
- ' |

(A2) - Yo Zirlrz
3 From (35)
A3) 2irjr,  25C(X-X)) ¥ (xc?-x s+ ¥ Xx ) “
f S Z_ 2" Y wx 32 . 202y 2(y.x 12 4
rloryt el gshe r )T+ sty T )
i where we abbreviate
i A
: (a4) S =siny, C=cos¥ . §.
S i
Since )’o is the root of the denominator in (11) we i
differentiate this denominator to show that 4
(A5) ) (2 ¥, (X C%+x52) + 1-XX_)+2(1+ ¥2)(X-X )SC = 0 ,
This implies that
13
(a6) - yé Z(X-XO)SC Z(X-XO)SC *
vz . J <2y = —— =, 4
1+ 5 2ro(xoc + X87) + 1-Xx, iﬁ1+uo)i+(x-x°) sin“2y
vwhere the sign alternative is to be chosen to insure equality.
We find then that (A2) will hold if and only if -
2. o2 v J - 4
(A7) ¥, (XCo4X S+ ¥ XX ) (27, (X C“+X5%) + 1-XX ) 3

2 2 2 2,2 , 2 2
(XC“+X 8%+ Voxxo) + 8°C% ¥, (x-xo)




3 .
(A7) may be written as
(A8)

¥, (20K, (X cxs?)+ y 2 (xx -20xx )2 + 2(x,C2+x85%) (xc%4x _s2)

-s2c2x -0 + ¥ xclix $H(1-3x ) - (xcPx $H2 -0

Since from (16)
2,0 2 val 2 2
(A9) ¥ *(x,C%4xs%) = xch4x $? + ¥ (XX -1)

we may substitute for the cubic term in Y, in (A8) reducing this

to terms of second degree or less, which upon combination with

the remaining terms of (A8) yield
(A10) x2((x, 2+x2)s2cexx_(2c4+25%425%c2-1) ) + (1-xx,) ¥, (xc2+x_s?)
-xc? + x %% = 0

(¢
the cancellation of the latter, (A10) reduces to (A9).

The coefficient of )’2 may be factored by (xc2+xosz), and with

Since

all the algebra is reversible, we have proved (43).




PART II

EXTENSION OF SOME RESULTS OF CULLEN ON
"THE EXCITATION OF PLANE SURFACE WAVES"

In [1] ,» Cullen ﬁas obtained a formula for the excita-
tion effiéiency of surface waves launched over a metal clad
dielectric. The formula is based on the following assumptions.

(a) the dielectric thickness d 1is small compared to
the ﬁavelength A,

(b) the energy carried by the surface wave in the dielectric
is négiigible compared to the energy carried by the surface wave
in the space above,

(c) an infinite horizontal magnetic line current is the
source.

For one application encountered at Technical Research
Group it was of interest to obtain a formula generalizing
Cullen's which drops the first restriction and replaces his
source by a finite horizontal magnetic line current. A restriction

on thickness is still invoked namely

(1) d 2 M(2deT)

but this is used to insure that only a single surface wave can
propagate. When the thickness is not small compared to the wave-
length, the assumption that the energy carried by the surface
wave in the dielectric is negligible is no longer tenable and it
is dropped here. It is rather surprising to discover that despite
the apparent immediate increase of complexity caused by the waiver

of these assumptions, our final formula for excitation efficiency




is hardly more complicated than Cullen's.
This section {s not in the least self contained. Rather

we simply point out, line by line, what changes must be made in
Cullen's derivation when assumptions (a) and (b) are not made? and,
as a first step, we obtain an intermediate formula when only these
assumptions are dropped. In order to change assumption (c), we
then rely on the results of the three dimensional analysis>given
in reference [2] and in the first part of this paper.

We use on the whole Cullen's notation. The first ex-
cepticn is that we let ¢ be the relative dielectric constant
of the dielectric. However, in contrast to the first part of
this paper, now the implicit time dependence is eI¥* and @ is
the grazing angle rather than the incidence angle.
REMOVAL OF ASSUMPTIONS (a) and (b)

The reflection coefficient for a ™ plane wave grazing

the metal clad dielectric surface at angle 0 is

R = 18in@ + J(cose)
J8in® - J(cos@)

where

(2) $(t) = @i tan (dee*tz)

Section (10) of Cullen may now be read through expression
(44) if the latter is replaced by kf(cos8). Cullen's formula
for the radiated power (34) remains correct with his { replaced
by 3(cos9).

In order to find the formula for the surface wave power,

observe that equation (19) of [1] remains correct if k {s




replaced by ki'(4/k). The generalized reflection coefficient
(3) Ry) - u+k
then appears in (19). Its residue at the pole u = kl, where 8 =

A=fid?, 1s

(4) 2¢k, % (k% -,412)
A (e-D) [ecPiicdti !(e+1)+k2)T

The leading term of (20) [1] is then

O R S T PR

(e-l)[ k? + kld(klz(e+1)+k2)7

The power radiated in the surface wave, is then (:I.nstead of (36)[ 1])
/"o 2 “gh 2 2.2 2.2
4k vie 1 e (a2 )
(6) i} o !

A (e-1)2 [k2e+k1d(k12(e+1)+k2)J 2

11+I2 J

-2k,y
1

I, - -S

( sin(2d kze-/ﬁz)

d {1+ =
24 fdZe- ,QL"’)

2ecosz(d ,/ kze- )612)




Let us now introduce a simplifying notation

(9) A=k, k = k/n2-1

where n is the equivalent "index of refraction™. The surface

wave existence condition (43) of [1] may be written as

(10) e,/nz -,/e-nzun(kd./ -nz) )
so that (8) becomes

(a1) I, = d(e~1 n2e+1-e+ e/k)/n“-1 .
| 2 2¢ (¢-n?)

The ratio of the power in the surface wave carried above the

dielectric to the power carried in the dielectric is

12) 1, e(e-n?)

I; ,/nz-l écd(e-l)(nz(e+1)-e) + ey nz-l ) .

When kd £<£1 so that n2-14-£ 1 this ratio is largé, and the

~term I, may be neglected in (6) compared to I,. In the general
case, however, 12 is not negligible,‘*and (6) must be written

(13)
2k / "”‘“Jﬂ P 1(e-n2
O

P =
* n(ec-1) [e+(kdln2-1) (n2(€+1)-€)]

From (35) of [1] the radiated power is
(14) X, T2
P 2

R“ 'k Yo v

F2(0)de

o
and the efficiency is

(15) P,
(G Fp + Pg




B O R

43.
where
iy
(16) ;s__ . zeZkhyn'-1 eJni-,l.(e_-ez),
' R n(e-1) e+(kd.£2-—1)(n2(e+1)-e)"§: F2(0)de
)

FINI INE SOURCE

Two changes must be made in formula (16) if the line
source is finite instead of infinite. Consider any source
whose three dimensiongl far field pattern in free space is
uniform in the xy plane, i.e., independent of angle, and has
H perpendicular to this plane. The analysis of [2] - or of
the preceeding section - shows that an extra factor of n appears
in the surface wave field and hence nz in the surface wave
power. In the radiation field the power flow must be integrated
over & large sphere whose area element is ordinarily sin®ded¢ -
but since 0 is now the grazing angle instead of the incidence
angle in the present notation - this factor is cos0dodf here.
The d§ cancels the same factor in the surface wave powér ex-
pression, if we consider the ratio of power flows per unit
azimuthal angle. The correct expression for efficiency is thus
(15) with (16) replaced by

(17)
S _F__ _ _wme !nz-l (e-n le 2khJ€i .
(e-l) [e+(de )(nz(e+1)-e)J [ cosOFz(O)dO

o

Both additional factors in the three dimensional case tend to

ey




44.
enhance the power in the surface wave at the expense of power

in the radiation field when compared to the two dimensional
case.

It is also well to point out that the preceeding formulas
for efficiency will in general be gravely in error if the source
18 not symmetric with respect to a plane parallel to the ground
plane, and can be considerably in error if the source is anything
but isotropic in the xy plane. This is especially true for those
high values of efficiency which are primarily due to the cancela-
tion of the directed and reflected rays in the radiation field.
(See Fig. 10 of [1] ).

Figure 9 shows the two and three dimensional
efficiencies for four values of ¢ vs h/A and d/A, the height
of the source and the thickness of the dielectric, respectively,

2 are shown. The

in wavelengths. The corresponding values of n
values of h/)\ where the radiated field is zero at both 45°

and 60° grazing angle are shown. These are not necessarily the

most efficient heights. If the conclusions of reference [5] were

to be taken literally for the dielectric clad ground plane then
at the former height the efficiency would always be 100X%. Cullen's

2. 1.25 also appear

conclugsions based on the case ¢ = 2.56, n
not to be highly relevant for other values. The optimum height
for maximum efficiency is apparently often zero. Moreover,

the optimum height, which is always a small fraction of a wave-
length, is not critically different from zero. The efficiency

does, however, depend critically on d/A (or n). None of these

conclusions are apparent from Cullen's work.
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ERRATA SHEET

Page 33, Line 9 and Page 34, Line 8, replace
"] 4 x2n by " J1+x2 "

Page 33, Line 7, at end of sentence insert:
“The stationary phase evaluation of they integration
reduces this factor to (1+x2)1’&. "

Page 43, Line 9 - replace ™n" by "/n "

Page 43, Line 10 - replace nnn by "n"

Equation (17) - delete factor "n" in numerator.

To the references add:

[7] Fernando and Barlow, "An Investigation of the
Properties of Radial Cylindrical Surface Waves
Launched over a Flat Reactive Surface",
Proc. of the Inst. of Elect. Eng., Part B,

May 1956, p. 307.
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